Enhancing Neural Recommender Models through Domain-Specific Concordance

Ananth Balashankar, Alex Beutel, Lakshminarayanan Subramanian

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Recommender models trained on historical observational data alone can be brittle when domain experts subject them to counterfactual evaluation. In many domains, experts can articulate common, high-level mappings or rules between categories of inputs (user's history) and categories of outputs (preferred recommendations). One challenge is to determine how to train recommender models to adhere to these rules. In this work, we introduce the goal of domain-specific concordance: the expectation that a recommender model follow a set of expert-defined categorical rules. We propose a regularization-based approach that optimizes for robustness on rule-based input perturbations. To test the effectiveness of this method, we apply it in a medication recommender model over diagnosis-medicine categories, and in movie and music recommender models, on rules over categories based on movie tags and song genres. We demonstrate that we can increase the category-based robustness distance by up to 126% without degrading accuracy, but rather increasing it by up to 12% compared to baseline models in the popular MIMIC-III, MovieLens-20M and Last.fm Million Song datasets.

Original languageEnglish (US)
Title of host publicationWSDM 2021 - Proceedings of the 14th ACM International Conference on Web Search and Data Mining
PublisherAssociation for Computing Machinery, Inc
Pages1002-1010
Number of pages9
ISBN (Electronic)9781450382977
DOIs
StatePublished - Aug 3 2021
Event14th ACM International Conference on Web Search and Data Mining, WSDM 2021 - Virtual, Online, Israel
Duration: Mar 8 2021Mar 12 2021

Publication series

NameWSDM 2021 - Proceedings of the 14th ACM International Conference on Web Search and Data Mining

Conference

Conference14th ACM International Conference on Web Search and Data Mining, WSDM 2021
CountryIsrael
CityVirtual, Online
Period3/8/213/12/21

Keywords

  • information systems
  • recommender systems

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Software

Fingerprint Dive into the research topics of 'Enhancing Neural Recommender Models through Domain-Specific Concordance'. Together they form a unique fingerprint.

Cite this