TY - GEN
T1 - Entity Cloze by Date
T2 - 2022 Findings of the Association for Computational Linguistics: NAACL 2022
AU - Onoe, Yasumasa
AU - Zhang, Michael J.Q.
AU - Choi, Eunsol
AU - Durrett, Greg
N1 - Publisher Copyright:
© Findings of the Association for Computational Linguistics: NAACL 2022 - Findings.
PY - 2022
Y1 - 2022
N2 - Language models (LMs) are typically trained once on a large-scale corpus and used for years without being updated. However, in a dynamic world, new entities constantly arise. We propose a framework to analyze what LMs can infer about new entities that did not exist when the LMs were pretrained. We derive a dataset of entities indexed by their origination date and paired with their English Wikipedia articles, from which we can find sentences about each entity. We evaluate LMs' perplexity on masked spans within these sentences. We show that models more informed about the entities, such as those with access to a textual definition of them, achieve lower perplexity on this benchmark. Our experimental results demonstrate that making inferences about new entities remains difficult for LMs. Given its wide coverage on entity knowledge and temporal indexing, our dataset can be used to evaluate LMs and techniques designed to modify or extend their knowledge. Our automatic data collection pipeline can be easily used to continually update our benchmark.
AB - Language models (LMs) are typically trained once on a large-scale corpus and used for years without being updated. However, in a dynamic world, new entities constantly arise. We propose a framework to analyze what LMs can infer about new entities that did not exist when the LMs were pretrained. We derive a dataset of entities indexed by their origination date and paired with their English Wikipedia articles, from which we can find sentences about each entity. We evaluate LMs' perplexity on masked spans within these sentences. We show that models more informed about the entities, such as those with access to a textual definition of them, achieve lower perplexity on this benchmark. Our experimental results demonstrate that making inferences about new entities remains difficult for LMs. Given its wide coverage on entity knowledge and temporal indexing, our dataset can be used to evaluate LMs and techniques designed to modify or extend their knowledge. Our automatic data collection pipeline can be easily used to continually update our benchmark.
UR - http://www.scopus.com/inward/record.url?scp=85136777482&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85136777482&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85136777482
T3 - Findings of the Association for Computational Linguistics: NAACL 2022 - Findings
SP - 693
EP - 702
BT - Findings of the Association for Computational Linguistics
PB - Association for Computational Linguistics (ACL)
Y2 - 10 July 2022 through 15 July 2022
ER -