Entropy of Two-Molecule Correlated Translational-Rotational Motions Using the kth Nearest Neighbor Method

Federico Fogolari, Gennaro Esposito, Bruce Tidor

Research output: Contribution to journalArticlepeer-review

Abstract

The entropy associated with rotations, translations, and their coupled motions provides an important contribution to the free energy of many physicochemical processes such as association and solvation. The kth nearest neighbor method, which offers a convenient way to estimate the entropy in high-dimensional spaces, has been previously applied for translational-rotational entropy estimation. Here, we explore the possibility of extending the kth nearest neighbor method to the computation of the entropy of correlated translation-rotations of two molecules, i.e., in the product space of two translation-rotations, both referred to the same independent reference system, which is relevant for all cases in which the correlated translational-rotational motion of more than two molecules is involved. Numerical tests show that, albeit the relatively high dimensionality (12) of the space, the kth nearest neighbor approach provides an accurate estimate for the entropy of two correlated translational-rotational motions, even when computed from a limited number of samples.

Original languageEnglish (US)
JournalJournal of chemical theory and computation
DOIs
StateAccepted/In press - 2021

ASJC Scopus subject areas

  • Computer Science Applications
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Entropy of Two-Molecule Correlated Translational-Rotational Motions Using the kth Nearest Neighbor Method'. Together they form a unique fingerprint.

Cite this