Epitaxial two-layer graphene under pressure: Diamene stiffer than Diamond

Filippo Cellini, Francesco Lavini, Tengfei Cao, Walt de Heer, Claire Berger, Angelo Bongiorno, Elisa Riedo

Research output: Contribution to journalArticlepeer-review

Abstract

The unprecedented ultrahigh interlayer stiffness of supported two-layer epitaxial graphene on silicon carbide (SiC) has been recently reported by our research group. We found that under localized pressure a two-layer epitaxial graphene behaves as an ultra-hard and ultra-stiff coating, showing exceptional mechanical properties that far exceed those of bare SiC. Density functional theory (DFT) calculations indicate that this unique behavior stems from a sp2-to-sp3 reversible phase transition of carbon films under compression, leading to a single-layer diamond-like structure that we called diamene. In this paper, force versus indentation depth curves from high-resolution nanoindentation experiments of CVD diamond and sapphire are carried out and compared to those obtained from two-layer epitaxial graphene on SiC. These new measurements confirm that the stiffness of epitaxial graphene is larger than that exhibited by CVD diamond and sapphire substrates. Our measurements show that areas of the film consisting of buffer layer plus one, or at most two, additional graphene layers are the ones most likely to exhibit phase-changing behaviors and larger-than-diamond stiffness.

Original languageEnglish (US)
Pages (from-to)8-13
Number of pages6
JournalFlatChem
Volume10
DOIs
StatePublished - Jul 2018

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Epitaxial two-layer graphene under pressure: Diamene stiffer than Diamond'. Together they form a unique fingerprint.

Cite this