TY - JOUR
T1 - Equations de Navier-Stokes dans ℝ2
T2 - Existence et comportement asymptotique de solutions d'énergie infinie
AU - Germain, Pierre
PY - 2006/3
Y1 - 2006/3
N2 - We prove first in this article that the two-dimensional Navier-Stokes equations are globally well-posed if the initial data u0 belongs to the closure of the Schwartz class in ∂BMO. We show then the asymptotic convergence to zero of the solution u of (NS) for an initial data u0 in some Besov space. Ḃp,q -1+2/p.
AB - We prove first in this article that the two-dimensional Navier-Stokes equations are globally well-posed if the initial data u0 belongs to the closure of the Schwartz class in ∂BMO. We show then the asymptotic convergence to zero of the solution u of (NS) for an initial data u0 in some Besov space. Ḃp,q -1+2/p.
UR - http://www.scopus.com/inward/record.url?scp=31344452083&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=31344452083&partnerID=8YFLogxK
U2 - 10.1016/j.bulsci.2005.06.004
DO - 10.1016/j.bulsci.2005.06.004
M3 - Article
AN - SCOPUS:31344452083
SN - 0007-4497
VL - 130
SP - 123
EP - 151
JO - Bulletin des Sciences Mathematiques
JF - Bulletin des Sciences Mathematiques
IS - 2
ER -