TY - JOUR
T1 - Equivariant birational types and Burnside volume
AU - Kresch, Andrew
AU - Tschinkel, Yuri
N1 - Publisher Copyright:
© 2022 Scuola Normale Superiore. All rights reserved.
PY - 2022
Y1 - 2022
N2 - We introduce equivariant Burnside groups, new invariants in equivariant birational geometry, generalizing birational symbols groups for actions of finite Abelian groups, due to Kontsevich, Pestun, and the second author, and study their properties. We establish a specialization map for the equivariant birational type of a smooth algebraic variety with an action of a finite group.
AB - We introduce equivariant Burnside groups, new invariants in equivariant birational geometry, generalizing birational symbols groups for actions of finite Abelian groups, due to Kontsevich, Pestun, and the second author, and study their properties. We establish a specialization map for the equivariant birational type of a smooth algebraic variety with an action of a finite group.
UR - http://www.scopus.com/inward/record.url?scp=85136118445&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85136118445&partnerID=8YFLogxK
U2 - 10.2422/2036-2145.202011_024
DO - 10.2422/2036-2145.202011_024
M3 - Article
AN - SCOPUS:85136118445
SN - 0391-173X
VL - 23
SP - 1013
EP - 1052
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
JF - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
IS - 2
ER -