TY - JOUR
T1 - Equivariant Cohomotopy implies orientifold tadpole cancellation
AU - Sati, Hisham
AU - Schreiber, Urs
N1 - Funding Information:
H. S. acknowledges that this work was performed in part at Aspen Center for Physics, which is supported by National Science Foundation, USA grant PHY-1607611 . This work was partially supported by a grant from the Simons Foundation, USA . We thank Matt Kukla for a hint on TikZ typesetting.
Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/10
Y1 - 2020/10
N2 - There are fundamental open problems in the precise global nature of RR-field tadpole cancellation conditions in string theory. Moreover, the non-perturbative lift as M5/MO5-anomaly cancellation in M-theory had been based on indirect plausibility arguments, lacking a microscopic underpinning in M-brane charge quantization. We provide a framework for answering these questions, crucial not only for mathematical consistency but also for phenomenological accuracy of string theory, by formulating the M-theory C-field on flat M-orientifolds in the generalized cohomology theory called Equivariant Cohomotopy. This builds on our previous results for smooth but curved spacetimes, showing in that setting that charge quantization in twisted Cohomotopy rigorously implies a list of expected anomaly cancellation conditions. Here we further expand this list by proving that brane charge quantization in unstable equivariant Cohomotopy implies the anomaly cancellation conditions for M-branes and D-branes on flat orbi-orientifolds. For this we (a) use an unstable refinement of the equivariant Hopf-tom Dieck theorem to derive local/twisted tadpole cancellation, and in addition (b) the lift to super-differential cohomology to establish global/untwisted tadpole cancellation. Throughout, we use (c) the unstable Pontrjagin–Thom theorem to identify the brane/O-plane configurations encoded in equivariant Cohomotopy and (d) the Boardman homomorphism to equivariant K-theory to identify Chan–Paton representations of D-brane charge. We find that unstable equivariant Cohomotopy, but not its image in equivariant K-theory, distinguishes D-brane charge from the finite set of types of O-plane charges.
AB - There are fundamental open problems in the precise global nature of RR-field tadpole cancellation conditions in string theory. Moreover, the non-perturbative lift as M5/MO5-anomaly cancellation in M-theory had been based on indirect plausibility arguments, lacking a microscopic underpinning in M-brane charge quantization. We provide a framework for answering these questions, crucial not only for mathematical consistency but also for phenomenological accuracy of string theory, by formulating the M-theory C-field on flat M-orientifolds in the generalized cohomology theory called Equivariant Cohomotopy. This builds on our previous results for smooth but curved spacetimes, showing in that setting that charge quantization in twisted Cohomotopy rigorously implies a list of expected anomaly cancellation conditions. Here we further expand this list by proving that brane charge quantization in unstable equivariant Cohomotopy implies the anomaly cancellation conditions for M-branes and D-branes on flat orbi-orientifolds. For this we (a) use an unstable refinement of the equivariant Hopf-tom Dieck theorem to derive local/twisted tadpole cancellation, and in addition (b) the lift to super-differential cohomology to establish global/untwisted tadpole cancellation. Throughout, we use (c) the unstable Pontrjagin–Thom theorem to identify the brane/O-plane configurations encoded in equivariant Cohomotopy and (d) the Boardman homomorphism to equivariant K-theory to identify Chan–Paton representations of D-brane charge. We find that unstable equivariant Cohomotopy, but not its image in equivariant K-theory, distinguishes D-brane charge from the finite set of types of O-plane charges.
KW - Equivariant homotopy theory
KW - M-theory
KW - Orbifolds
KW - Orientifolds
KW - String theory
UR - http://www.scopus.com/inward/record.url?scp=85087049858&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087049858&partnerID=8YFLogxK
U2 - 10.1016/j.geomphys.2020.103775
DO - 10.1016/j.geomphys.2020.103775
M3 - Article
AN - SCOPUS:85087049858
SN - 0393-0440
VL - 156
JO - Journal of Geometry and Physics
JF - Journal of Geometry and Physics
M1 - 103775
ER -