Estimating Amount of Food in a Circular Dining Bowl from a Single Image

Wenyan Jia, Boyang Li, Yaguang Zheng, Zhi-Hong Mao, Mingui Sun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Unhealthy diet is a top risk factor causing obesity and numerous chronic diseases. To help the public adopt healthy diet, nutrition scientists need user-friendly tools to conduct Dietary Assessment (DA). In recent years, new DA tools have been developed using a smartphone or a wearable device which acquires images during a meal. These images are then processed to estimate calories and nutrients of the consumed food. Although considerable progress has been made, 2D food images lack scale reference and 3D volumetric information. In addition, food must be sufficiently observable from the image. This basic condition can be met when the food is stand-alone (no food container is used) or it is contained in a shallow plate. However, the condition cannot be met easily when a bowl is used. The food is often occluded by the bowl edge, and the shape of the bowl may not be fully determined from the image. However, bowls are the most utilized food containers by billions of people in many parts of the world, especially in Asia and Africa. In this work, we propose to premeasure plates and bowls using a marked adhesive strip before a dietary study starts. This simple procedure eliminates the use of a scale reference throughout the DA study. In addition, we use mathematical models and image processing to reconstruct the bowl in 3D. Our key idea is to estimate how full the bowl is rather than how much food is (in either volume or weight) in the bowl. This idea reduces the effect of occlusion. The experimental data have shown satisfactory results of our methods which enable accurate DA studies using both plates and bowls with reduced burden on research participants.

Original languageUndefined
Title of host publicationEnglish
Pages1-9
DOIs
StatePublished - Oct 29 2023

Cite this