TY - JOUR
T1 - Evidence for interhemispheric processing of inputs from the hands in human S2 and PV
AU - Disbrow, Elizabeth
AU - Roberts, Tim
AU - Poeppel, David
AU - Krubitzer, Leah
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2001
Y1 - 2001
N2 - In the present investigation, we identified cortical areas involved in the integration of bimanual inputs in human somatosensory cortex. Using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG), we compared the responses to unilateral versus bilateral stimulation in anterior parietal cortex and areas in the Sylvian fissure of the contralateral hemisphere. The extent of fMRI activation on the upper bank of the Sylvian fissure, in the second somatosensory (S2) and the parietal ventral (PV) areas, was significantly larger for bilateral stimulation than for unilateral stimulation. Using MEG, we were able to describe the latency of response in S1 and S2/PV to unilateral and bilateral stimulation. The MEG response had three components under both stimulus conditions. An early peak in S1 at 40 ms, a middle peak in S2/PV at 80-160 ms, and three late peaks in S2/PV at 250-420 ms. There was an increase in magnetic field strength in S2/PV to bilateral stimulation at 300-400 ms post stimulus. The fMRI results indicate that, as in monkeys, S2/PV receives inputs from both the contralateral and ipsilateral hand. The MEG data suggest that information is processed serially from S1 to S2. The very late response in S2/PV indicates that extensive intrahemispheric processing occurs before information is transferred to the opposite hemisphere. The neural substrate for the increased activation and field strength at long latencies during bilateral stimulation can be accounted for in three ways. Under bilateral stimulus conditions, more neurons may be active, neuronal firing rate may increase, and/or neural activity may be more synchronous.
AB - In the present investigation, we identified cortical areas involved in the integration of bimanual inputs in human somatosensory cortex. Using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG), we compared the responses to unilateral versus bilateral stimulation in anterior parietal cortex and areas in the Sylvian fissure of the contralateral hemisphere. The extent of fMRI activation on the upper bank of the Sylvian fissure, in the second somatosensory (S2) and the parietal ventral (PV) areas, was significantly larger for bilateral stimulation than for unilateral stimulation. Using MEG, we were able to describe the latency of response in S1 and S2/PV to unilateral and bilateral stimulation. The MEG response had three components under both stimulus conditions. An early peak in S1 at 40 ms, a middle peak in S2/PV at 80-160 ms, and three late peaks in S2/PV at 250-420 ms. There was an increase in magnetic field strength in S2/PV to bilateral stimulation at 300-400 ms post stimulus. The fMRI results indicate that, as in monkeys, S2/PV receives inputs from both the contralateral and ipsilateral hand. The MEG data suggest that information is processed serially from S1 to S2. The very late response in S2/PV indicates that extensive intrahemispheric processing occurs before information is transferred to the opposite hemisphere. The neural substrate for the increased activation and field strength at long latencies during bilateral stimulation can be accounted for in three ways. Under bilateral stimulus conditions, more neurons may be active, neuronal firing rate may increase, and/or neural activity may be more synchronous.
UR - http://www.scopus.com/inward/record.url?scp=0035004581&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035004581&partnerID=8YFLogxK
U2 - 10.1152/jn.2001.85.5.2236
DO - 10.1152/jn.2001.85.5.2236
M3 - Article
C2 - 11353038
AN - SCOPUS:0035004581
SN - 0022-3077
VL - 85
SP - 2236
EP - 2244
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 5
ER -