TY - JOUR
T1 - Evolution of coronavirus frameshifting elements
T2 - Competing stem networks explain conservation and variability
AU - Yan, Shuting
AU - Zhu, Qiyao
AU - Hohl, Jenna
AU - Dong, Alex
AU - Schlick, Tamar
N1 - Funding Information:
ACKNOWLEDGMENTS. We gratefully acknowledge funding from the NSF RAPID Award 2030377 from the Division of Mathematical Sciences and the Division of Chemistry, NSF Division of Mathematics Sciences Award DMS-2151777, NIH R35GM122562 Award from the National Institute of General Medical Sciences, and Philip-Morris International to T. Schlick.
Publisher Copyright:
Copyright © 2023 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
PY - 2023/5/16
Y1 - 2023/5/16
N2 - The frameshifting RNA element (FSE) in coronaviruses (CoVs) regulates the programmed −1 ribosomal frameshift (−1 PRF) mechanism common to many viruses. The FSE is of particular interest as a promising drug candidate. Its associated pseudoknot or stem loop structure is thought to play a large role in frameshifting and thus viral protein production. To investigate the FSE structural evolution, we use our graph theory-based methods for representing RNA secondary structures in the RNA-As-Graphs (RAG) framework to calculate conformational landscapes of viral FSEs with increasing sequence lengths for representative 10 Alpha and 13 Beta-CoVs. By following length-dependent conformational changes, we show that FSE sequences encode many possible competing stems which in turn favor certain FSE topologies, including a variety of pseudoknots, stem loops, and junctions. We explain alternative competing stems and topological FSE changes by recurring patterns of mutations. At the same time, FSE topology robustness can be understood by shifted stems within different sequence contexts and base pair coevolution. We further propose that the topology changes reflected by length-dependent conformations contribute to tuning the frameshifting efficiency. Our work provides tools to analyze virus sequence/structure correlations, explains how sequence and FSE structure have evolved for CoVs, and provides insights into potential mutations for therapeutic applications against a broad spectrum of CoV FSEs by targeting key sequence/structural transitions.
AB - The frameshifting RNA element (FSE) in coronaviruses (CoVs) regulates the programmed −1 ribosomal frameshift (−1 PRF) mechanism common to many viruses. The FSE is of particular interest as a promising drug candidate. Its associated pseudoknot or stem loop structure is thought to play a large role in frameshifting and thus viral protein production. To investigate the FSE structural evolution, we use our graph theory-based methods for representing RNA secondary structures in the RNA-As-Graphs (RAG) framework to calculate conformational landscapes of viral FSEs with increasing sequence lengths for representative 10 Alpha and 13 Beta-CoVs. By following length-dependent conformational changes, we show that FSE sequences encode many possible competing stems which in turn favor certain FSE topologies, including a variety of pseudoknots, stem loops, and junctions. We explain alternative competing stems and topological FSE changes by recurring patterns of mutations. At the same time, FSE topology robustness can be understood by shifted stems within different sequence contexts and base pair coevolution. We further propose that the topology changes reflected by length-dependent conformations contribute to tuning the frameshifting efficiency. Our work provides tools to analyze virus sequence/structure correlations, explains how sequence and FSE structure have evolved for CoVs, and provides insights into potential mutations for therapeutic applications against a broad spectrum of CoV FSEs by targeting key sequence/structural transitions.
UR - http://www.scopus.com/inward/record.url?scp=85158155674&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85158155674&partnerID=8YFLogxK
U2 - 10.1073/pnas.2221324120
DO - 10.1073/pnas.2221324120
M3 - Article
C2 - 37155888
AN - SCOPUS:85158155674
SN - 0027-8424
VL - 120
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 20
M1 - e2221324120
ER -