Evolution of solar surface inflows around emerging active regions

N. Gottschling, H. Schunker, A. C. Birch, B. Löptien, L. Gizon

Research output: Contribution to journalArticlepeer-review


Context. Solar active regions are associated with Evershed outflows in sunspot penumbrae, moat outflows surrounding sunspots, and extended inflows surrounding active regions. Extended inflows have been identified around established active regions with various methods. The evolution of these inflows and their dependence on active region properties as well as their effect on the global magnetic field are not yet understood. Aims. We aim to understand the evolution of the average inflows around emerging active regions and to derive an empirical model for these inflows. We expect that this can be used to better understand how the inflows act on the diffusion of the magnetic field in active regions. Methods. We analyzed horizontal flows at the surface of the Sun using local correlation tracking of solar granules observed in continuum images of the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We measured average flows of a sample of 182 isolated active regions up to seven days before and after their emergence onto the solar surface with a cadence of 12 h. About half of the active regions in the sample developed sunspots with moat flows in addition to the surrounding inflows. We investigated the average inflow properties with respect to active region characteristics of total flux and latitude. We fit a model to these observed inflows for a quantitative analysis. Results. We find that converging flows of about 20-30 m s-1 are first visible one day prior to emergence, in agreement with recent results. These converging flows are present regardless of the active region properties of latitude or flux. We confirm a recently found prograde flow of about 40 m s-1 at the leading polarity during emergence. We find that the time after emergence when the latitudinal inflows increase in amplitude depends on the flux of the active region, ranging from one to four days after emergence and increasing with flux. The largest extent of the inflows is up to about 7  ±  1° away from the center of the active region within the first six days after emergence. The inflow velocities have amplitudes of about 50 m s-1.

Original languageEnglish (US)
Article numberA148
JournalAstronomy and Astrophysics
StatePublished - Aug 1 2021


  • Sun: activity
  • Sun: magnetic fields
  • Sunspots

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Evolution of solar surface inflows around emerging active regions'. Together they form a unique fingerprint.

Cite this