Abstract
Let S be a set of n points in ℝ3. Let ω* be the width (i.e., thickness) of a minimum-width infinite cylindrical shell (the region between two co-axial cylinders) containing S. We first present an O(n5)-time algorithm for computing ω*, which as far as we know is the first nontrivial algorithm for this problem. We then present an O(n2+δ)-time algorithm, for any δ > 0, that computes a cylindrical shell of width at most 56ω* containing S.
Original language | English (US) |
---|---|
Pages (from-to) | 307-320 |
Number of pages | 14 |
Journal | Discrete and Computational Geometry |
Volume | 26 |
Issue number | 3 |
DOIs | |
State | Published - Oct 2001 |
ASJC Scopus subject areas
- Theoretical Computer Science
- Geometry and Topology
- Discrete Mathematics and Combinatorics
- Computational Theory and Mathematics