TY - JOUR
T1 - Exact dynamical coarse-graining without time-scale separation
AU - Lu, Jianfeng
AU - Vanden-Eijnden, Eric
PY - 2014/7/28
Y1 - 2014/7/28
N2 - A family of collective variables is proposed to perform exact dynamical coarse-graining even in systems without time scale separation. More precisely, it is shown that these variables are not slow in general, yet satisfy an overdamped Langevin equation that statistically preserves the sequence in which any regions in collective variable space are visited and permits to calculate exactly the mean first passage times from any such region to another. The role of the free energy and diffusion coefficient in this overdamped Langevin equation is discussed, along with the way they transform under any change of variable in collective variable space. These results apply both to systems with and without inertia, and they can be generalized to using several collective variables simultaneously. The view they offer on what makes collective variables and reaction coordinates optimal breaks from the standard notion that good collective variable must be slow variable, and it suggests new ways to interpret data from molecular dynamics simulations and experiments.
AB - A family of collective variables is proposed to perform exact dynamical coarse-graining even in systems without time scale separation. More precisely, it is shown that these variables are not slow in general, yet satisfy an overdamped Langevin equation that statistically preserves the sequence in which any regions in collective variable space are visited and permits to calculate exactly the mean first passage times from any such region to another. The role of the free energy and diffusion coefficient in this overdamped Langevin equation is discussed, along with the way they transform under any change of variable in collective variable space. These results apply both to systems with and without inertia, and they can be generalized to using several collective variables simultaneously. The view they offer on what makes collective variables and reaction coordinates optimal breaks from the standard notion that good collective variable must be slow variable, and it suggests new ways to interpret data from molecular dynamics simulations and experiments.
UR - http://www.scopus.com/inward/record.url?scp=84905656925&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905656925&partnerID=8YFLogxK
U2 - 10.1063/1.4890367
DO - 10.1063/1.4890367
M3 - Article
AN - SCOPUS:84905656925
SN - 0021-9606
VL - 141
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 4
M1 - 044109
ER -