TY - GEN
T1 - Exhaustive service matching algorithms for input queued switches
AU - Li, Yihan
AU - Panwar, Shivendra S.
AU - Chao, H. Jonathan
PY - 2004
Y1 - 2004
N2 - Virtual Output Queuing is widely used by fixed-length high-speed switches to overcome head-of-line blocking. This is done by means of matching algorithms. Maximum matching algorithms have good performance, but their implementation complexity is quite high. Maximal matching algorithms need speedup to guarantee good performance. Iterative matching schemes, such as iSLIP and DRRM, use multiple iterations to converge on a maximal match. The objective of matching algorithms is to reduce the matching overhead for each time slot. In this paper, Exhaustive Service Matching is presented as a way to amortize the cost of a match over multiple time slots, thus significantly improving switch performance. In an Exhaustive Service Matching switch, cells belonging to the same packet are transferred to the output continuously, which leads to good packet delay performance and simplifies the implementation of packet reassembly. To avoid unfairness under some extremely unbalanced traffic pattern, Limited Service Matching and Exhaustive Service Matching with Hamiltonian Walk (EMHW) are presented. We show that Limited Service Matching achieves better fairness under unbalanced traffic patterns, and in some cases improves the delay performance, while retaining low implementation complexity and a scalable architecture. We prove that EMHW is stable under all admissible traffic. All these schemes can be applied to existing matching algorithms, such as iSLIP and DRRM, to achieve high switching efficiency with low implementation complexities.
AB - Virtual Output Queuing is widely used by fixed-length high-speed switches to overcome head-of-line blocking. This is done by means of matching algorithms. Maximum matching algorithms have good performance, but their implementation complexity is quite high. Maximal matching algorithms need speedup to guarantee good performance. Iterative matching schemes, such as iSLIP and DRRM, use multiple iterations to converge on a maximal match. The objective of matching algorithms is to reduce the matching overhead for each time slot. In this paper, Exhaustive Service Matching is presented as a way to amortize the cost of a match over multiple time slots, thus significantly improving switch performance. In an Exhaustive Service Matching switch, cells belonging to the same packet are transferred to the output continuously, which leads to good packet delay performance and simplifies the implementation of packet reassembly. To avoid unfairness under some extremely unbalanced traffic pattern, Limited Service Matching and Exhaustive Service Matching with Hamiltonian Walk (EMHW) are presented. We show that Limited Service Matching achieves better fairness under unbalanced traffic patterns, and in some cases improves the delay performance, while retaining low implementation complexity and a scalable architecture. We prove that EMHW is stable under all admissible traffic. All these schemes can be applied to existing matching algorithms, such as iSLIP and DRRM, to achieve high switching efficiency with low implementation complexities.
KW - Exhaustive service
KW - Hamiltonian walk
KW - Limited service
KW - Polling
KW - Scheduling
KW - Switching
KW - Virtual Output Queueing
UR - http://www.scopus.com/inward/record.url?scp=2942565968&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2942565968&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:2942565968
SN - 0780383753
SN - 9780780383753
T3 - IEEE Workshop on High Performance Switching and Routing, HPSR
SP - 253
EP - 258
BT - 2004 Workshop on High Performance Switching and Routing, HPSR 2004
T2 - 2004 Workshop on High Perfomance Switching and Routing, HPSR 2004
Y2 - 19 April 2004 through 20 April 2004
ER -