Abstract
Use of short pulse laser for minimally invasive therapeutic treatment has become an indispensable tool in the technological arsenal of modern medicine and biomedical engineering. The objective of this paper is to analyze both numerically and experimentally the heat affected zone in tissue phantoms irradiated with a mode-locked short pulse laser source. It is only by being able to predict reliably the resultant temperature field that necessary dose for desired therapeutic outcomes can be ensured. A multi layer model of the skin consisting of the outer skin layer (epidermis), the lower layer (dermis) and fatty tissue underneath is considered in this study. Each layer of tissue has different optical properties. The experimentally measured temperature profiles for layered phantoms are compared with the homogenous phantoms using the non-Fourier hyperbolic and Fourier parabolic heat conduction model.
Original language | English (US) |
---|---|
Title of host publication | Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004 |
Pages | 715-720 |
Number of pages | 6 |
Volume | 4 |
State | Published - 2004 |
Event | Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004 - Charlotte, NC, United States Duration: Jul 11 2004 → Jul 15 2004 |
Other
Other | Proceedings of the ASME Heat Transfer/Fluids Engineering Summer Conference 2004, HT/FED 2004 |
---|---|
Country/Territory | United States |
City | Charlotte, NC |
Period | 7/11/04 → 7/15/04 |
ASJC Scopus subject areas
- Engineering(all)