Exploiting a tail fin to improve the performance of galloping flow energy harvesters

James H. Noel, Mohammed F. Daqaq

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Flow energy harvesters (FEHs) have recently emerged as a major player in the field of micro-power generation. Such devices are designed to harness energy from a dynamic flow field, typically wind, in order to power remote, sub-milliwatt consumption sensors that are hard to access or maintain. Previous research efforts have focused on harnessing flow energy under nearly steady conditions where measurable variations in the flow speed occur at a much longer time scale than the time constant of the harvester itself. Under such conditions, the nature of the harvester's transient response is irrelevant and does not constitute a critical performance criterion. However, since gusts of wind also contain a significant amount of energy, designing FEHs to have a fast transient response is essential to capture the maximum possible energy from the flow. To address this critical issue, we propose a galloping piezoelectric energy harvester consisting of piezoelectric cantilever beam with a modified bluff body mounted at its tip. Square, trapezoid, and triangle bluff bodies were tested, each augmented with a tail fin to enhance the transient response of the harvester. It is shown experimentally that the settling time of the response and the steady state output power can be improved substantially when the fin is added.

Original languageEnglish (US)
Title of host publication12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850183
DOIs
StatePublished - 2016
EventASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016 - Charlotte, United States
Duration: Aug 21 2016Aug 24 2016

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume6

Other

OtherASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2016
CountryUnited States
CityCharlotte
Period8/21/168/24/16

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint Dive into the research topics of 'Exploiting a tail fin to improve the performance of galloping flow energy harvesters'. Together they form a unique fingerprint.

  • Cite this

    Noel, J. H., & Daqaq, M. F. (2016). Exploiting a tail fin to improve the performance of galloping flow energy harvesters. In 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (Proceedings of the ASME Design Engineering Technical Conference; Vol. 6). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/DETC201659925