Exploiting bi-stability to enhance energy capture from turbulent flows

Ali H. Alhadidi, Mohammed F. Daqaq

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper investigates utilizing a nonlinear (bi-stable) restoring force to enhance the transduction of galloping energy harvesters in turbulent flows. To that end, a harvester consisting of a piezoelectric cantilever beam augmented with a squaresectioned bluff body at the free end is considered. Two repulsive magnets located at the tip of the beam are used to introduce the bi-stable restoring force. Turbulence is generated in a wind tunnel using static-grid structures located in the upstream of the bluff body. Three different mesh screens with square bars are designed with different bar and mesh widths to control the Reynolds numbers and associated turbulence intensity. A series of wind tunnel tests are then used to experimentally investigate the response of the harvester with and without the tip magnets. Results demonstrate that the bi-stable restoring force can be used to improve the output power of the harvester for sufficiently large turbulence intensities.

Original languageEnglish (US)
Title of host publicationIntegrated System Design and Implementation; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791857304
DOIs
StatePublished - 2015
EventASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015 - Colorado Springs, United States
Duration: Sep 21 2015Sep 23 2015

Publication series

NameASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015
Volume2

Other

OtherASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2015
Country/TerritoryUnited States
CityColorado Springs
Period9/21/159/23/15

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Control and Systems Engineering
  • Mechanics of Materials
  • Building and Construction

Fingerprint

Dive into the research topics of 'Exploiting bi-stability to enhance energy capture from turbulent flows'. Together they form a unique fingerprint.

Cite this