Exploring models and data for image question answering

Mengye Ren, Ryan Kiros, Richard S. Zemel

Research output: Contribution to journalConference articlepeer-review

Abstract

This work aims to address the problem of image-based question-answering (QA) with new models and datasets. In our work, we propose to use neural networks and visual semantic embeddings, without intermediate stages such as object detection and image segmentation, to predict answers to simple questions about images. Our model performs 1.8 times better than the only published results on an existing image QA dataset. We also present a question generation algorithm that converts image descriptions, which are widely available, into QA form. We used this algorithm to produce an order-of-magnitude larger dataset, with more evenly distributed answers. A suite of baseline results on this new dataset are also presented.

Original languageEnglish (US)
Pages (from-to)2953-2961
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2015-January
StatePublished - 2015
Event29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada
Duration: Dec 7 2015Dec 12 2015

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Exploring models and data for image question answering'. Together they form a unique fingerprint.

Cite this