Exploring the Efficiency of Data-Oblivious Programs

Lauren Biernacki, Biniyam Mengist Tiruye, Meron Zerihun Demissie, Fitsum Assamnew Andargie, Brandon Reagen, Todd Austin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Data-oblivious programs have gained popularity due to their application in security, but are often dismissed because of anticipated performance loss. In order to better understand these performance concerns, this paper details the first performance characterization of data-oblivious programs. We study mechanical data-oblivious transformations applied to twenty workloads from the VIP-Bench benchmark suite and find that, overall, performance overheads vary widely, with a geomean slowdown of 7.4×. This variance can be attributed to whether or not the data-oblivious transformations affect the workload's asymptotic complexity. Performance overheads are much lower for the fourteen workloads whose complexity is unaffected, at 1.9× geomean. Further, by reducing control hazards, we find that dataoblivious transformations often result in improved per-instruction performance (e.g., better branch and memory performance) and increase the number of instructions the processor can execute in parallel (e.g., IPC). Leveraging lessons from analyzing these overheads, we study four notably slow data-oblivious workloads and show how algorithmic changes can significantly improve performance-achieving an average 86.4× speedup over the mechanically produced baseline programs. While data-oblivious program execution often incurs overheads, the contributions of this paper show that these overheads can be overcome by compiler and algorithmic optimizations, bringing us closer to achieving efficient and widely-used data-oblivious programs.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages189-200
Number of pages12
ISBN (Electronic)9798350397390
DOIs
StatePublished - 2023
Event2023 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2023 - Raleigh, United States
Duration: Apr 23 2023Apr 25 2023

Publication series

NameProceedings - 2023 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2023

Conference

Conference2023 IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS 2023
Country/TerritoryUnited States
CityRaleigh
Period4/23/234/25/23

Keywords

  • Benchmark testing
  • Data oblivious programming
  • If conversion

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Software
  • Safety, Risk, Reliability and Quality
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Exploring the Efficiency of Data-Oblivious Programs'. Together they form a unique fingerprint.

Cite this