Exploring the origin of low-metallicity stars in Milky-Way-like galaxies with the NIHAO-UHD simulations

Federico Sestito, Tobias Buck, Else Starkenburg, Nicolas F. Martin, Julio F. Navarro, Kim A. Venn, Aura Obreja, Pascale Jablonka, Andrea V. Maccio

Research output: Contribution to journalArticlepeer-review

Abstract

The kinematics of the most metal-poor stars provide a window into the early formation and accretion history of the Milky Way (MW). Here, we use five high-resolution cosmological zoom-in simulations (∼ 5 × 106 star particles) of MW-like galaxies taken from the NIHAO-UHD project, to investigate the origin of low-metallicity stars ([Fe/H]≤-2.5). The simulations show a prominent population of low-metallicity stars confined to the disc plane, as recently discovered in the MW. The ubiquity of this finding suggests that the MW is not unique in this respect. Independently of the accretion history, we find that 90 per cent of the retrograde stars in this population are brought in during the initial build-up of the galaxies during the first few Gyr after the Big Bang. Our results therefore highlight the great potential of the retrograde population as a tracer of the early build-up of the MW. The prograde planar population, on the other hand, is accreted during the later assembly phase and samples the full galactic accretion history. In case of a quiet accretion history, this prograde population is mainly brought in during the first half of cosmic evolution (t 7 Gyr), while, in the case of an ongoing active accretion history, later mergers on prograde orbits are also able to contribute to this population. Finally, we note that the MW shows a rather large population of eccentric, very metal-poor planar stars. This is a feature not seen in most of our simulations, with the exception of one simulation with an exceptionally active early building phase.

Original languageEnglish (US)
Pages (from-to)3750-3762
Number of pages13
JournalMonthly Notices of the Royal Astronomical Society
Volume500
Issue number3
DOIs
StatePublished - Jan 1 2021

Keywords

  • Galaxy: Abundances
  • Galaxy: Disc
  • Galaxy: Evolution
  • Galaxy: Formation
  • Galaxy: Halo
  • Galaxy: Kinematics and dynamics

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint Dive into the research topics of 'Exploring the origin of low-metallicity stars in Milky-Way-like galaxies with the NIHAO-UHD simulations'. Together they form a unique fingerprint.

Cite this