Exposure Correction Model to Enhance Image Quality

F. Irem Eyiokur, Dogucan Yaman, Hazim Kemal Ekenel, Alexander Waibel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Exposure errors in an image cause a degradation in the contrast and low visibility in the content. In this paper, we address this problem and propose an end-to-end expo-sure correction model in order to handle both under- and overexposure errors with a single model. Our model contains an image encoder, consecutive residual blocks, and image decoder to synthesize the corrected image. We utilize perceptual loss, feature matching loss, and multi-scale discriminator to increase the quality of the generated image as well as to make the training more stable. The experimental results indicate the effectiveness of proposed model. We achieve the state-of-the-art result on a large-scale exposure dataset. Besides, we investigate the effect of exposure set-ting of the image on the portrait matting task. We find that under- and overexposed images cause severe degradation in the performance of the portrait matting models. We show that after applying exposure correction with the proposed model, the portrait matting quality increases significantly. https://github.com/yamand16/ExposureCorrection.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
PublisherIEEE Computer Society
Pages675-685
Number of pages11
ISBN (Electronic)9781665487399
DOIs
StatePublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 20 2022

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2022-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/20/22

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Exposure Correction Model to Enhance Image Quality'. Together they form a unique fingerprint.

Cite this