Extremal subgraphs for two graphs

F. R K Chung, P. Erdös, J. Spencer

Research output: Contribution to journalArticle

Abstract

In this paper we study several interrelated extremal graph problems: 1. (i) Given integers n, e, m, what is the largest integer f(n, e, m) such that every graph with n vertices and e edges must have an induced m-vertex subgraph with at least f(n, e, m) edges? 2. (ii) Given integers n, e, e′, what is the largest integer g(n, e, e′) such that any two n-vertex graphs G and H, with e and e′ edges, respectively, must have a common subgraph with at least g(n, e, e′) edges? Results obtained here can be used for solving several questions related to the following graph decomposition problem, previously studied by two of the authors and others. 3. (iii) Given integers n, r, what is the least integer t = U(n, r) such that for any two n-vertex r-uniform hypergraphs G and H with the same number of edges the edge set E(G) of G can be partitioned into E1,..., Ei and the edge set E(H) of H can be partitioned into E1,..., Ei in such a way that for each i, the graphs formed by Ei and Ei are isomorphic.

Original languageEnglish (US)
Pages (from-to)248-260
Number of pages13
JournalJournal of Combinatorial Theory, Series B
Volume38
Issue number3
DOIs
StatePublished - Jun 1985

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Extremal subgraphs for two graphs'. Together they form a unique fingerprint.

  • Cite this