Factors affecting the mixed-layer concentrations of singlet oxygen in sunlit lakes

Sarah B. Partanen, Jennifer N. Apell, Jianming Lin, Kristopher McNeill

Research output: Contribution to journalArticlepeer-review


The steady-state concentration of singlet oxygen within a lake ([1O2]SS) is an important parameter that can affect the environmental half-life of pollutants and environmental fate modelling. However, values of [1O2]SS are often determined for the near-surface of a lake, and these values typically do not represent the average over the epilimnia of lakes. In this work, the environmental and physical factors that have the largest impact on [1O2]SS within lake epilimnia were identified. It was found that the depth of the epilimnion has the largest impact on depth-averaged [1O2]SS, with a factor of 8.8 decrease in [1O2]SS when epilimnion depth increases from 2 m to 20 m. The next most important factors are the wavelength-dependent singlet oxygen quantum yield relationship and the latitude of the lake, causing variations in [1O2]SS by factors of 3.2 and 2.5 respectively, over ranges of representative values. For a set of representative parameters, the depth-averaged value of [1O2]SS within an average epilimnion depth of 9.0 m was found to be 5.8 × 10-16 M and the near-surface value of [1O2]SS was found to be 1.9 × 10-14 M. We recommend a range of 6 × 10-17 to 5 × 10-15 M as being more representative of [1O2]SS values within the epilimnia of lakes globally and potentially more useful for estimating pollutant lifetimes than those calculated using [1O2]SS values that correspond to near-surface, summer midday values. This work advances our understanding of [1O2]SS inter-lake variability in the environment, and provides estimates of [1O2]SS for practitioners and researchers to assess environmental half-lives of pollutants due to reaction with singlet oxygen.

Original languageEnglish (US)
Pages (from-to)1130-1145
Number of pages16
JournalEnvironmental Science: Processes and Impacts
Issue number8
StatePublished - Aug 2021


  • Lakes
  • Oxygen
  • Seasons
  • Singlet Oxygen

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Management, Monitoring, Policy and Law
  • Environmental Chemistry


Dive into the research topics of 'Factors affecting the mixed-layer concentrations of singlet oxygen in sunlit lakes'. Together they form a unique fingerprint.

Cite this