Fast Adaptation with Linearized Neural Networks

Wesley J. Maddox, Shuai Tang, Pablo Garcia Moreno, Andrew Gordon Wilson, Andreas Damianou

Research output: Contribution to journalConference articlepeer-review

Abstract

The inductive biases of trained neural networks are difficult to understand and, consequently, to adapt to new settings. We study the inductive biases of linearizations of neural networks, which we show to be surprisingly good summaries of the full network functions. Inspired by this finding, we propose a technique for embedding these inductive biases into Gaussian processes through a kernel designed from the Jacobian of the network. In this setting, domain adaptation takes the form of interpretable posterior inference, with accompanying uncertainty estimation. This inference is analytic and free of local optima issues found in standard techniques such as fine-tuning neural network weights to a new task. We develop significant computational speed-ups based on matrix multiplies, including a novel implementation for scalable Fisher vector products. Our experiments on both image classification and regression demonstrate the promise and convenience of this framework for transfer learning, compared to neural network fine-tuning. Code is available at https://github.com/amzn/xfer/tree/master/finite_ntk.

Original languageEnglish (US)
Pages (from-to)2737-2745
Number of pages9
JournalProceedings of Machine Learning Research
Volume130
StatePublished - 2021
Event24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021 - Virtual, Online, United States
Duration: Apr 13 2021Apr 15 2021

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Fast Adaptation with Linearized Neural Networks'. Together they form a unique fingerprint.

Cite this