@inproceedings{9b5d7800227f4229bdc15842be9ed875,
title = "Fast Bag-Of-Words Candidate Selection in Content-Based Instance Retrieval Systems",
abstract = "Many content-based image search and instance retrieval systems implement bag-of-visual-words strategies for candidate selection. Visual processing of an image results in hundreds of visual words that make up a document, and these words are used to build an inverted index. Query processing then consists of an initial candidate selection phase that queries the inverted index, followed by more complex reranking of the candidates using various image features. The initial phase typically uses disjunctive top-k query processing algorithms originally proposed for searching text collections.Our objective in this paper is to optimize the performance of disjunctive top-k computation for candidate selection in content-based instance retrieval systems. While there has been extensive previous work on optimizing this phase for textual search engines, we are unaware of any published work that studies this problem for instance retrieval, where both index and query data are quite different from the distributions commonly found and exploited in the textual case. Using data from a commercial large-scale instance retrieval system, we address this challenge in three steps. First, we analyze the quantitative properties of index structures and queries in the system, and discuss how they differ from the case of text retrieval. Second, we describe an optimized term-at-a-time retrieval strategy that significantly outperforms baseline term-at-a-time and document-at-a-time strategies, achieving up to 66% speed-up over the most efficient baseline. Finally, we show that due to the different properties of the data, several common safe and unsafe early termination techniques from the literature fail to provide any significant performance benefits.",
keywords = "bag-of-visual-words, candidate selection, cascade ranking, image retrieval, inverted index, top-k search",
author = "Micha{\l} Siedlaczek and Qi Wang and Chen, {Yen Yu} and Torsten Suel",
note = "Funding Information: This research was partially supported by NSF Grant IIS-1718680 ”Index Sharding and Query Routing in Distributed Search Engines”.; 2018 IEEE International Conference on Big Data, Big Data 2018 ; Conference date: 10-12-2018 Through 13-12-2018",
year = "2018",
month = jul,
day = "2",
doi = "10.1109/BigData.2018.8621935",
language = "English (US)",
series = "Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "821--830",
editor = "Yang Song and Bing Liu and Kisung Lee and Naoki Abe and Calton Pu and Mu Qiao and Nesreen Ahmed and Donald Kossmann and Jeffrey Saltz and Jiliang Tang and Jingrui He and Huan Liu and Xiaohua Hu",
booktitle = "Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018",
}