Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning

Michal Derezin, Christopher Musco, Jiaming Yang

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    We present a new class of preconditioned iterative methods for solving linear systems of the form Ax = b. Our methods are based on constructing a low-rank Nyström approximation to A using sparse random matrix sketching. This approximation is used to construct a preconditioner, which itself is inverted quickly using additional levels of random sketching and preconditioning. We prove that the convergence of our methods depends on a natural average condition number of A, which improves as the rank of the Nyström approximation increases. Concretely, this allows us to obtain faster runtimes for a number of fundamental linear algebraic problems: 1. We show how to solve any n × n linear system that is well-conditioned except for k outlying large singular values in O(n2.065 + kω) time, improving on a recent result of [Dereziński, Yang, STOC 2024] for all k ≳ n0.78. 2. We give the first O(n2 + dλω) time algorithm for solving a regularized linear system (A + λI)x = b, where A is positive semidefinite with effective dimension dλ = tr(A(A + λI)−1). This problem arises in applications like Gaussian process regression. 3. We give faster algorithms for approximating Schatten p-norms and other matrix norms. For example, for the Schatten 1-norm (nuclear norm), we give an algorithm that runs in O(n2.11) time, improving on an O(n2.18) method of [Musco et al., ITCS 2018]. All results are proven in the real RAM model of computation. Interestingly, previous state-of-the-art algorithms for most of the problems above relied on stochastic iterative methods, like stochastic coordinate and gradient descent. Our work takes a completely different approach, instead leveraging tools from matrix sketching.

    Original languageEnglish (US)
    Title of host publicationAnnual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025
    PublisherAssociation for Computing Machinery
    Pages1972-2004
    Number of pages33
    ISBN (Electronic)9798331312008
    StatePublished - 2025
    Event36th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025 - New Orleans, United States
    Duration: Jan 12 2025Jan 15 2025

    Publication series

    NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
    Volume3
    ISSN (Print)1071-9040
    ISSN (Electronic)1557-9468

    Conference

    Conference36th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025
    Country/TerritoryUnited States
    CityNew Orleans
    Period1/12/251/15/25

    ASJC Scopus subject areas

    • Software
    • General Mathematics

    Fingerprint

    Dive into the research topics of 'Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning'. Together they form a unique fingerprint.

    Cite this