FastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning

Flrian Knoll, Jure Zbontar, Anuroop Sriram, Matthew J. Muckley, Mary Bruno, Aarn Defazio, Marc Parente, Krzysztof J. Geras, Je Katsnelsn, Hersh Chandarana, Zizhao Zhang, Michal Drzdzalv, Adriana Rmer, Michael Rabbat, Pascal Vincent, James Pinkertn, Duo Wang, Nafissa Yakubova, Erich Owens, C. Lawrence ZitnickMichael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

    Research output: Contribution to journalArticlepeer-review

    Abstract

    A publicly available dataset containing k-space and image data of knee examinations for accelerated MR image reconstruction using machine learning is presented.

    Original languageEnglish (US)
    Article numbere190007
    JournalRadiology: Artificial Intelligence
    Volume2
    Issue number1
    DOIs
    StatePublished - Jan 2020

    ASJC Scopus subject areas

    • Radiology Nuclear Medicine and imaging
    • Artificial Intelligence
    • Radiological and Ultrasound Technology

    Fingerprint

    Dive into the research topics of 'FastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning'. Together they form a unique fingerprint.

    Cite this