FEATURE IMITATING NETWORKS

Sari Saba-Sadiya, Tuka Alhanai, Mohammad M. Ghassemi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We introduce a novel approach to neural learning: the Feature-Imitating-Network (FIN). A FIN is a neural network with weights that are initialized to reliably approximate one or more closed-form statistical features, such as Shannon's entropy. In this paper, we demonstrate that FINs (and FIN ensembles) provide best-in-class performance for a variety of downstream signal processing and inference tasks, while using less data and requiring less fine-tuning compared to other networks of similar (or even greater) representational power. We conclude that FINs can help bridge the gap between domain experts and machine learning practitioners by enabling researchers to harness insights from feature-engineering to enhance the performance of contemporary representation learning approaches.

Original languageEnglish (US)
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4128-4132
Number of pages5
ISBN (Electronic)9781665405409
DOIs
StatePublished - 2022
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: May 23 2022May 27 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period5/23/225/27/22

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'FEATURE IMITATING NETWORKS'. Together they form a unique fingerprint.

Cite this