Feature Imitating Networks Enhance the Performance, Reliability and Speed of Deep Learning on Biomedical Image Processing Tasks

Shangyang Min, Hassan B. Ebadian, Tuka Alhanai, Mohammad M. Ghassemi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Feature-Imitating-Networks (FINs) are neural networks that are first trained to approximate closed-form statistical features (e.g. Entropy), and then embedded into other networks to enhance their performance. In this work, we perform the first evaluation of FINs for biomedical image processing tasks. We begin by training a set of FINs to imitate six common radiomics features, and then compare the performance of larger networks (with and without embedding the FINs) for three experimental tasks: COVID-19 detection from CT scans, brain tumor classification from MRI scans, and brain-tumor segmentation from MRI scans. We found that models embedded with FINs provided enhanced performance for all three tasks when compared to baseline networks without FINs, even when those baseline networks had more parameters. Additionally, we found that models embedded with FINs converged faster and more consistently compared to baseline networks with similar or greater representational capacity. The results of our experiments provide evidence that FINs may offer state-of-the-art performance for a variety of other biomedical image processing tasks.

Original languageEnglish (US)
Title of host publication46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350371499
DOIs
StatePublished - 2024
Event46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024 - Orlando, United States
Duration: Jul 15 2024Jul 19 2024

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2024
Country/TerritoryUnited States
CityOrlando
Period7/15/247/19/24

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Feature Imitating Networks Enhance the Performance, Reliability and Speed of Deep Learning on Biomedical Image Processing Tasks'. Together they form a unique fingerprint.

Cite this