Abstract
We have developed a semiempirical feature scale model of Si etching in S F6 O2 plasma. The kinetic parameters in the model are determined by matching simulated profiles with experimentally observed feature profiles obtained at various pressures, rf-bias voltages, and O2 mole fraction in the feed gas. The model parameters are further constrained by using information about the relative radical concentrations, ion flux, and ion energy obtained from plasma diagnostics. Excellent agreement between experiments and simulations is obtained. The combined experimental and simulation study reveals that chemical etching in the lateral direction is significantly reduced through competitive adsorption of O on the feature sidewalls and subsequent formation of a fluorinated oxide layer that passivates the sidewalls. The flux of F and S Fx radicals is focused toward the feature bottom due to increased neutral reflection off the passivated sidewalls. The net result is enhanced etching in the vertical direction and improved feature anisotropy with decreasing F-to-O ratio (increasing O2 fraction). However, too much O2 addition eventually leads to the slowing down of the vertical etch rate as O adsorption on active surface sites dominates even at the feature bottom.
Original language | English (US) |
---|---|
Pages (from-to) | 1430-1439 |
Number of pages | 10 |
Journal | Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films |
Volume | 23 |
Issue number | 5 |
DOIs | |
State | Published - Sep 2005 |
ASJC Scopus subject areas
- Condensed Matter Physics
- Surfaces and Interfaces
- Surfaces, Coatings and Films