Feedforward inhibition and synaptic scaling - Two sides of the same coin?

Christian Keck, Cristina Savin, Jörg Lücke

Research output: Contribution to journalArticlepeer-review

Abstract

Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing.

Original languageEnglish (US)
Article numbere1002432
JournalPLoS computational biology
Volume8
Issue number3
DOIs
StatePublished - Mar 2012

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Feedforward inhibition and synaptic scaling - Two sides of the same coin?'. Together they form a unique fingerprint.

Cite this