Abstract
In the case where the charge of the particle is small compared to its mass, we describe the asymptotics of the Lorentz-Maxwell equation (Abraham model) for any finite-energy data. As time goes to infinity, we prove that the speed of the particle converges to a certain limit, whereas the electromagnetic field can be decomposed into a soliton plus a free solution of the Maxwell equation. It is the first instance of a scattering result for general finite energy data in a field-particle equation.
Original language | English (US) |
---|---|
Pages (from-to) | 927-943 |
Number of pages | 17 |
Journal | Annales Henri Poincare |
Volume | 9 |
Issue number | 5 |
DOIs | |
State | Published - Aug 2008 |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Nuclear and High Energy Physics
- Mathematical Physics