TY - JOUR
T1 - Finite reflection groups and linear preserver problems
AU - Li, Chi Kwong
AU - Spitkovsky, Ilya
AU - Zobin, Nahum
PY - 2004
Y1 - 2004
N2 - Let G be one of the Coxeter groups An, Bn, Dn, or I2(n), naturally acting on a Euclidean space V, and let ℒ(G) stand for the set of linear transformations ϕ of End V that satisfy ϕ(G) = G. It is easy to see that ℒ(G) contains all transformations of the form X ↦ PXQ, X ↦ PX*Q, where P, Q belong to the normalizer of G in the orthogonal group and PQ ∈ G. We show that in most cases these transformations exhaust ℒ(G); the only (rather unexpected) exception is the case G = Bn.
AB - Let G be one of the Coxeter groups An, Bn, Dn, or I2(n), naturally acting on a Euclidean space V, and let ℒ(G) stand for the set of linear transformations ϕ of End V that satisfy ϕ(G) = G. It is easy to see that ℒ(G) contains all transformations of the form X ↦ PXQ, X ↦ PX*Q, where P, Q belong to the normalizer of G in the orthogonal group and PQ ∈ G. We show that in most cases these transformations exhaust ℒ(G); the only (rather unexpected) exception is the case G = Bn.
UR - http://www.scopus.com/inward/record.url?scp=2942662107&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2942662107&partnerID=8YFLogxK
U2 - 10.1216/rmjm/1181069902
DO - 10.1216/rmjm/1181069902
M3 - Article
AN - SCOPUS:2942662107
SN - 0035-7596
VL - 34
SP - 225
EP - 251
JO - Rocky Mountain Journal of Mathematics
JF - Rocky Mountain Journal of Mathematics
IS - 1
ER -