Finite-Temperature Dimer Method for Finding Saddle Points on Free Energy Surfaces

Huan Zhang, Lili Qiu, Dan Hu

Research output: Contribution to journalArticlepeer-review

Abstract

The dimer method and its variants have been shown to be efficient in finding saddle points on potential surfaces. In the dimer method, the most unstable direction is approximately obtained by minimizing the total potential energy of the dimer. Then, the force in this direction is reversed to move the dimer toward saddle points. When the finite-temperature effect is important for a high-dimensional system, one usually needs to describe the dynamics in a low-dimensional space of reaction coordinates. In this case, transition states are collected as saddle points on the free energy surface. The traditional dimer method cannot be directly employed to find saddle points on a free energy surface since the surface is not known a priori. Here, we develop a finite-temperature dimer method for searching saddle points on the free energy surface. In this method, a constrained rotation dynamics of the dimer system is used to sample dimer directions and an efficient average method is used to obtain a good approximation of the most unstable direction. This approximated direction is then used in reversing the force component and evolving the dimer toward saddle points. Our numerical results suggest that the new method is efficient in finding saddle points on free energy surfaces.

Original languageEnglish (US)
Pages (from-to)1701-1706
Number of pages6
JournalJournal of Computational Chemistry
Volume40
Issue number18
DOIs
StatePublished - Jul 5 2019

Keywords

  • dimer method
  • free energy surface
  • rare event
  • saddle point
  • transition path

ASJC Scopus subject areas

  • Chemistry(all)
  • Computational Mathematics

Fingerprint Dive into the research topics of 'Finite-Temperature Dimer Method for Finding Saddle Points on Free Energy Surfaces'. Together they form a unique fingerprint.

Cite this