Abstract
Resistance genes (R-genes) act as an immune system in plants by recognizing pathogens and inducing defensive pathways. Many R-gene loci are present in plant genomes, presumably reflecting the need to maintain a large repertoire of resistance alleles. These loci also often segregate for resistance and susceptibility alleles that natural selection has maintained as polymorphisms within a species for millions of years. Given the obvious advantage to an individual of being disease resistant, what prevents these resistance alleles from being driven to fixation by natural selection? A cost of resistance is one potential explanation; most models require a lower fitness of resistant individuals in the absence of pathogens for long-term persistence of susceptibility alleles. Here we test for the presence of a cost of resistance at the RPM1 locus of Arabidopsis thaliana. Results of a field experiment comparing the fitness of isogenic strains that differ in the presence or absence of RPM1 and its natural promoter reveal a large cost of RPM1, providing the first evidence that costs contribute to the maintenance of an ancient R-gene polymorphism.
Original language | English (US) |
---|---|
Pages (from-to) | 74-77 |
Number of pages | 4 |
Journal | Nature |
Volume | 423 |
Issue number | 6935 |
DOIs | |
State | Published - 2003 |
ASJC Scopus subject areas
- General