Abstract
Motivated by applications in vision and pattern detection, we introduce the following problem. We are given pairs of datapoints (x1, y1), (x2, y2),...,(xm, ym), a noise parameter δ > 0, a degree bound d, and a threshold ρ > 0. We desire "every" degree d polynomial h satisfying h(xi) ∈ [yi - δ, yi + δ] for at least ρ fraction of i's. We assume by rescaling the data that each xi, yi ∈ [-1, 1]. If δ = 0, this is just the list decoding problem that has been popular in complexity theory and for which Sudan gave a poly(d, 1/ρ) time algorithm. We show a few basic results about the problem. We show that there is no polynomial time algorithm for this problem as defined; the number of solutions can be as large as exp(dρ.5-e) even if the data is generated using a 50-50 mixture of two polynomials. We give a rigorous analysis of a brute force algorithm for the version of this problem where the data is generated from a mixture of polynomials. Finally, in surprising contrast to our "lower bound", we describe a polynomial-time algorithm for reconstructing mixtures of O(1) polynomials when the mixing weights are "nondegeneration." The tools used include classical theory of approximations.
Original language | English (US) |
---|---|
Title of host publication | Conference Proceedings of the Annual ACM Symposium on Theory of Computing |
Pages | 162-169 |
Number of pages | 8 |
State | Published - 2002 |
Event | Proceedings of the 34th Annual ACM Symposium on Theory of Computing - Montreal, Que., Canada Duration: May 19 2002 → May 21 2002 |
Other
Other | Proceedings of the 34th Annual ACM Symposium on Theory of Computing |
---|---|
Country/Territory | Canada |
City | Montreal, Que. |
Period | 5/19/02 → 5/21/02 |
ASJC Scopus subject areas
- Software