Flexible Compositional Learning of Structured Visual Concepts

Yanli Zhou, Brenden M. Lake

Research output: Contribution to conferencePaperpeer-review

Abstract

Humans are highly efficient learners, with the ability to grasp the meaning of a new concept from just a few examples. Unlike popular computer vision systems, humans can flexibly leverage the compositional structure of the visual world, understanding new concepts as combinations of existing concepts. In the current paper, we study how people learn different types of visual compositions, using abstract visual forms with rich relational structure. We find that people can make meaningful compositional generalizations from just a few examples in a variety of scenarios, and we develop a Bayesian program induction model that provides a close fit to the behavioral data. Unlike past work examining special cases of compositionality, our work shows how a single computational approach can account for many distinct types of compositional generalization.

Original languageEnglish (US)
Pages1146-1152
Number of pages7
StatePublished - 2021
Event43rd Annual Meeting of the Cognitive Science Society: Comparative Cognition: Animal Minds, CogSci 2021 - Virtual, Online, Austria
Duration: Jul 26 2021Jul 29 2021

Conference

Conference43rd Annual Meeting of the Cognitive Science Society: Comparative Cognition: Animal Minds, CogSci 2021
Country/TerritoryAustria
CityVirtual, Online
Period7/26/217/29/21

Keywords

  • Bayesian inference
  • compositionality
  • concept learning
  • few-shot learning
  • visual learning

ASJC Scopus subject areas

  • Cognitive Neuroscience
  • Artificial Intelligence
  • Computer Science Applications
  • Human-Computer Interaction

Fingerprint

Dive into the research topics of 'Flexible Compositional Learning of Structured Visual Concepts'. Together they form a unique fingerprint.

Cite this