TY - JOUR
T1 - Flexible information routing in neural populations through stochastic comodulation
AU - Haimerl, Caroline
AU - Savin, Cristina
AU - Simoncelli, Eero P.
N1 - Publisher Copyright:
© 2019 Neural information processing systems foundation. All rights reserved.
PY - 2019
Y1 - 2019
N2 - Humans and animals are capable of flexibly switching between a multitude of tasks, each requiring rapid, sensory-informed decision making. Incoming stimuli are processed by a hierarchy of neural circuits consisting of millions of neurons with diverse feature selectivity. At any given moment, only a small subset of these carry task-relevant information. In principle, downstream processing stages could identify the relevant neurons through supervised learning, but this would require many training trials. Such extensive learning periods are inconsistent with the observed flexibility of humans or animals, both of whom can adjust to changes in task parameters or structure almost immediately. Here, we propose a novel solution based on functionally-targeted stochastic modulation. It has been observed that trial-to-trial neural activity is modulated by a shared, low-dimensional, stochastic signal that introduces task-irrelevant noise. Counter-intuitively, this noise appears to be preferentially targeted towards task-informative neurons, corrupting the encoded signal. We hypothesize that this modulation offers a solution to the identification problem, labeling task-informative neurons so as to facilitate decoding. We simulate an encoding population of spiking neurons whose rates are modulated by a shared stochastic signal, and show that a linear decoder with readout weights estimated from neuron-specific modulation strength can achieve near-optimal accuracy. Such a decoder allows fast and flexible task-dependent information routing without relying on hardwired knowledge of the task-informative neurons (as in maximum likelihood) or unrealistically many supervised training trials (as in regression).
AB - Humans and animals are capable of flexibly switching between a multitude of tasks, each requiring rapid, sensory-informed decision making. Incoming stimuli are processed by a hierarchy of neural circuits consisting of millions of neurons with diverse feature selectivity. At any given moment, only a small subset of these carry task-relevant information. In principle, downstream processing stages could identify the relevant neurons through supervised learning, but this would require many training trials. Such extensive learning periods are inconsistent with the observed flexibility of humans or animals, both of whom can adjust to changes in task parameters or structure almost immediately. Here, we propose a novel solution based on functionally-targeted stochastic modulation. It has been observed that trial-to-trial neural activity is modulated by a shared, low-dimensional, stochastic signal that introduces task-irrelevant noise. Counter-intuitively, this noise appears to be preferentially targeted towards task-informative neurons, corrupting the encoded signal. We hypothesize that this modulation offers a solution to the identification problem, labeling task-informative neurons so as to facilitate decoding. We simulate an encoding population of spiking neurons whose rates are modulated by a shared stochastic signal, and show that a linear decoder with readout weights estimated from neuron-specific modulation strength can achieve near-optimal accuracy. Such a decoder allows fast and flexible task-dependent information routing without relying on hardwired knowledge of the task-informative neurons (as in maximum likelihood) or unrealistically many supervised training trials (as in regression).
UR - http://www.scopus.com/inward/record.url?scp=85090171554&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090171554&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85090171554
SN - 1049-5258
VL - 32
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019
Y2 - 8 December 2019 through 14 December 2019
ER -