Flow energy harvesters with a nonlinear restoring force

Ali H. Alhadidi, Amin Bibo, Mohammed F. Daqaq

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This ppppaper examines the performance of a galloping energy harvester possessing a nonlinear restoring force. To achieve this goal, a flow energy harvester consisting of a piezoelectric cantilever beam augmented with a square-sectioned bluff body at the free end is considered. Two magnets located near the tip of the bluff body are used to introduce the nonlinearity which strength and nature can be altered by changing the distance between the magnets. A lumped-parameter aero-electromechanical model adopting the quasi-steady assumption for aerodynamic loading is presented and utilized to numerically simulate the harvester's response. Wind tunnel tests are also performed to validate the numerical simulations by conducting upward and downward wind velocity sweeps. Results comparing the relative performance of several harvesters with potential functions of different shapes demonstrate that a mono-stable potential function with a hardening restoring force can outperform all other configurations.

Original languageEnglish (US)
Title of host publicationASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
PublisherWeb Portal ASME (American Society of Mechanical Engineers)
ISBN (Electronic)9780791846155
DOIs
StatePublished - 2014
EventASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 - Newport, United States
Duration: Sep 8 2014Sep 10 2014

Publication series

NameASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
Volume2

Other

OtherASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014
CountryUnited States
CityNewport
Period9/8/149/10/14

ASJC Scopus subject areas

  • Biomaterials
  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'Flow energy harvesters with a nonlinear restoring force'. Together they form a unique fingerprint.

  • Cite this

    Alhadidi, A. H., Bibo, A., & Daqaq, M. F. (2014). Flow energy harvesters with a nonlinear restoring force. In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014 (ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2014; Vol. 2). Web Portal ASME (American Society of Mechanical Engineers). https://doi.org/10.1115/SMASIS20147445