TY - GEN
T1 - Fluctuating hydrodynamics and direct simulation Monte Carlo
AU - Balakrishnan, Kaushik
AU - Bell, John B.
AU - Donev, Aleksandar
AU - Garcia, Alejandro L.
PY - 2012
Y1 - 2012
N2 - Thermodynamic fluctuations are significant at microscopic scales even when hydrodynamic transport models (i.e., Navier-Stokes equations) are still accurate; a well-known example is Rayleigh scattering, which makes the sky blue. Interesting phenomena also appear in non-equilibrium systems, such as the enhancement of diffusion during mixing due to the correlation of velocity and concentration fluctuations. Direct Simulation Monte Carlo (DSMC) simulations are useful in the study of hydrodynamic fluctuations due to their computational efficiency and ability to model molecular detail, such as internal energy and chemical reactions. More recently, finite volume schemes based on the fluctuating hydrodynamic equations of Landau and Lifshitz have been formulated and validated by comparisons with DSMC simulations. This paper discusses some of the relevant numerical issues and physical effects investigated using DSMC and stochastic Navier-Stokes simulations. This paper also presents the multi-component fluctuating hydrodynamic equations, including chemical reactions, and illustrates their numerical solutions in the study of Turing patterns. We find that behind a propagating reaction front, labyrinth patterns are produced due to the coupling of reactions and species diffusion. In general, fluctuations accelerate the propagation speed of the leading front but differences are observed in the Turing patterns depending on the origin of the fluctuations (stochastic hydrodynamic fluxes versus Langevin chemistry).
AB - Thermodynamic fluctuations are significant at microscopic scales even when hydrodynamic transport models (i.e., Navier-Stokes equations) are still accurate; a well-known example is Rayleigh scattering, which makes the sky blue. Interesting phenomena also appear in non-equilibrium systems, such as the enhancement of diffusion during mixing due to the correlation of velocity and concentration fluctuations. Direct Simulation Monte Carlo (DSMC) simulations are useful in the study of hydrodynamic fluctuations due to their computational efficiency and ability to model molecular detail, such as internal energy and chemical reactions. More recently, finite volume schemes based on the fluctuating hydrodynamic equations of Landau and Lifshitz have been formulated and validated by comparisons with DSMC simulations. This paper discusses some of the relevant numerical issues and physical effects investigated using DSMC and stochastic Navier-Stokes simulations. This paper also presents the multi-component fluctuating hydrodynamic equations, including chemical reactions, and illustrates their numerical solutions in the study of Turing patterns. We find that behind a propagating reaction front, labyrinth patterns are produced due to the coupling of reactions and species diffusion. In general, fluctuations accelerate the propagation speed of the leading front but differences are observed in the Turing patterns depending on the origin of the fluctuations (stochastic hydrodynamic fluxes versus Langevin chemistry).
KW - DSMC
KW - Reaction-diffusion systems
KW - Thermal fluctuations
KW - Turing instability
UR - http://www.scopus.com/inward/record.url?scp=84873146215&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84873146215&partnerID=8YFLogxK
U2 - 10.1063/1.4769610
DO - 10.1063/1.4769610
M3 - Conference contribution
AN - SCOPUS:84873146215
SN - 9780735411159
T3 - AIP Conference Proceedings
SP - 695
EP - 704
BT - 28th International Symposium on Rarefied Gas Dynamics 2012
T2 - 28th International Symposium on Rarefied Gas Dynamics 2012, RGD 2012
Y2 - 9 July 2012 through 13 July 2012
ER -