TY - JOUR
T1 - Focal Adhesion Kinase Plays a Role in Osteoblast Mechanotransduction In Vitro but Does Not Affect Load-Induced Bone Formation In Vivo
AU - Castillo, Alesha B.
AU - Blundo, Jennifer T.
AU - Chen, Julia C.
AU - Lee, Kristen L.
AU - Yereddi, Nikitha Reddy
AU - Jang, Eugene
AU - Kumar, Shefali
AU - Tang, W. Joyce
AU - Zarrin, Sarah
AU - Kim, Jae Beom
AU - Jacobs, Christopher R.
PY - 2012/9/21
Y1 - 2012/9/21
N2 - A healthy skeleton relies on bone's ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK-/- clonal lines and conditional FAK knockout mice, respectively. FAK-/- osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.
AB - A healthy skeleton relies on bone's ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK-/- clonal lines and conditional FAK knockout mice, respectively. FAK-/- osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.
UR - http://www.scopus.com/inward/record.url?scp=84866684728&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866684728&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0043291
DO - 10.1371/journal.pone.0043291
M3 - Article
C2 - 23028449
AN - SCOPUS:84866684728
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 9
M1 - e43291
ER -