TY - JOUR
T1 - Foldamer-Mediated Structural Rearrangement Attenuates Aβ Oligomerization and Cytotoxicity
AU - Kumar, Sunil
AU - Henning-Knechtel, Anja
AU - Chehade, Ibrahim
AU - Magzoub, Mazin
AU - Hamilton, Andrew D.
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/11/29
Y1 - 2017/11/29
N2 - The conversion of the native random coil amyloid beta (Aβ) into amyloid fibers is thought to be a key event in the progression of Alzheimer's disease (AD). A significant body of evidence suggests that the highly dynamic Aβ oligomers are the main causal agent associated with the onset of AD. Among many potential therapeutic approaches, one is the modulation of Aβ conformation into off-pathway structures to avoid the formation of the putative neurotoxic Aβ oligomers. A library of oligoquinolines was screened to identify antagonists of Aβ oligomerization, amyloid formation, and cytotoxicity. A dianionic tetraquinoline, denoted as 5, was one of the most potent antagonists of Aβ fibrillation. Biophysical assays including amyloid kinetics, dot blot, ELISA, and TEM show that 5 effectively inhibits both Aβ oligomerization and fibrillation. The antagonist activity of 5 toward Aβ aggregation diminishes with sequence and positional changes in the surface functionalities. 5 binds to the central discordant α-helical region and induces a unique α-helical conformation in Aβ. Interestingly, 5 adjusts its conformation to optimize the antagonist activity against Aβ. 5 effectively rescues neuroblastoma cells from Aβ-mediated cytotoxicity and antagonizes fibrillation and cytotoxicity pathways of secondary nucleation induced by seeding. 5 is also equally effective in inhibiting preformed oligomer-mediated processes. Collectively, 5 induces strong secondary structure in Aβ and inhibits its functions including oligomerization, fibrillation, and cytotoxicity.
AB - The conversion of the native random coil amyloid beta (Aβ) into amyloid fibers is thought to be a key event in the progression of Alzheimer's disease (AD). A significant body of evidence suggests that the highly dynamic Aβ oligomers are the main causal agent associated with the onset of AD. Among many potential therapeutic approaches, one is the modulation of Aβ conformation into off-pathway structures to avoid the formation of the putative neurotoxic Aβ oligomers. A library of oligoquinolines was screened to identify antagonists of Aβ oligomerization, amyloid formation, and cytotoxicity. A dianionic tetraquinoline, denoted as 5, was one of the most potent antagonists of Aβ fibrillation. Biophysical assays including amyloid kinetics, dot blot, ELISA, and TEM show that 5 effectively inhibits both Aβ oligomerization and fibrillation. The antagonist activity of 5 toward Aβ aggregation diminishes with sequence and positional changes in the surface functionalities. 5 binds to the central discordant α-helical region and induces a unique α-helical conformation in Aβ. Interestingly, 5 adjusts its conformation to optimize the antagonist activity against Aβ. 5 effectively rescues neuroblastoma cells from Aβ-mediated cytotoxicity and antagonizes fibrillation and cytotoxicity pathways of secondary nucleation induced by seeding. 5 is also equally effective in inhibiting preformed oligomer-mediated processes. Collectively, 5 induces strong secondary structure in Aβ and inhibits its functions including oligomerization, fibrillation, and cytotoxicity.
UR - http://www.scopus.com/inward/record.url?scp=85035766891&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85035766891&partnerID=8YFLogxK
U2 - 10.1021/jacs.7b08259
DO - 10.1021/jacs.7b08259
M3 - Article
C2 - 29058422
AN - SCOPUS:85035766891
SN - 0002-7863
VL - 139
SP - 17098
EP - 17108
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 47
ER -