TY - JOUR
T1 - Forced lattice vibrations
T2 - Part II
AU - Deift, Percy
AU - Kriecherbauer, Thomas
AU - Venakides, Stephanos
PY - 1995
Y1 - 1995
N2 - This is the second part of a two‐part series on forced lattice vibrations in which a semi‐infinite lattice of one‐dimensional particles {xn}n≧1, (Formula Presented.) is driven from one end by a particle x0. This particle undergoes a given, periodically perturbed, uniform motion x0(t) = 2at + h(yt) where a and γ are constants and h(·) has period 2π. Results and notation from Part I are used freely and without further comment. Here the authors prove that sufficiently ample families of traveling‐wave solutions of the doubly infinite system (Formula Presented.) exist in the cases γ > γ1 and γ1 > γ > γ2 for general restoring forces F. In the case with Toda forces, F(x) = ex, the authors prove that sufficiently ample families of traveling‐wave solutions exist for all k, γk > γ > γk+1. By a general result proved in Part I, this implies that there exist time‐periodic solutions of the driven system (i) with k‐phase wave asymptotics in n of the type (Formula Presented.) with k = 0 or 1 for general F and k arbitrary for F(x) = ex (when k = 0, take γ0 = ∞ and X0 ≡ 0).
AB - This is the second part of a two‐part series on forced lattice vibrations in which a semi‐infinite lattice of one‐dimensional particles {xn}n≧1, (Formula Presented.) is driven from one end by a particle x0. This particle undergoes a given, periodically perturbed, uniform motion x0(t) = 2at + h(yt) where a and γ are constants and h(·) has period 2π. Results and notation from Part I are used freely and without further comment. Here the authors prove that sufficiently ample families of traveling‐wave solutions of the doubly infinite system (Formula Presented.) exist in the cases γ > γ1 and γ1 > γ > γ2 for general restoring forces F. In the case with Toda forces, F(x) = ex, the authors prove that sufficiently ample families of traveling‐wave solutions exist for all k, γk > γ > γk+1. By a general result proved in Part I, this implies that there exist time‐periodic solutions of the driven system (i) with k‐phase wave asymptotics in n of the type (Formula Presented.) with k = 0 or 1 for general F and k arbitrary for F(x) = ex (when k = 0, take γ0 = ∞ and X0 ≡ 0).
UR - http://www.scopus.com/inward/record.url?scp=84990634413&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84990634413&partnerID=8YFLogxK
U2 - 10.1002/cpa.3160481103
DO - 10.1002/cpa.3160481103
M3 - Article
AN - SCOPUS:84990634413
SN - 0010-3640
VL - 48
SP - 1251
EP - 1298
JO - Communications on Pure and Applied Mathematics
JF - Communications on Pure and Applied Mathematics
IS - 11
ER -