Formalizing locality for normative synaptic plasticity models

Colin Bredenberg, Ezekiel Williams, Cristina Savin, Blake Richards, Guillaume Lajoie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In recent years, many researchers have proposed new models for synaptic plasticity in the brain based on principles of machine learning. The central motivation has been the development of learning algorithms that are able to learn difficult tasks while qualifying as “biologically plausible”. However, the concept of a biologically plausible learning algorithm is only heuristically defined as an algorithm that is potentially implementable by biological neural networks. Further, claims that neural circuits could implement any given algorithm typically rest on an amorphous concept of “locality” (both in space and time). As a result, it is unclear what many proposed local learning algorithms actually predict biologically, and which of these are consequently good candidates for experimental investigation. Here, we address this lack of clarity by proposing formal and operational definitions of locality. Specifically, we define different classes of locality, each of which makes clear what quantities cannot be included in a learning rule if an algorithm is to qualify as local with respect to a given (biological) constraint. We subsequently use this framework to distill testable predictions from various classes of biologically plausible synaptic plasticity models that are robust to arbitrary choices about neural network architecture. Therefore, our framework can be used to guide claims of biological plausibility and to identify potential means of experimentally falsifying a proposed learning algorithm for the brain.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
EditorsA. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713899921
StatePublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period12/10/2312/16/23

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Formalizing locality for normative synaptic plasticity models'. Together they form a unique fingerprint.

Cite this