Frames in bioimaging

Amina Chebira, Jelena Kovačević

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We survey our work on adaptive multiresolution (MR) approaches to the classification of biological images. The system adds MR decomposition in front of a generic classifier consisting of feature computation and classification in each MR subspace, yielding local decisions, which are then combined into a global decision using a weighting algorithm. The system tested on different datasets (subcellular protein location images, drosophila embryo images and histological images images) gave very high accuracies. We hypothesize that the space-frequency localized information in the multiresolution subspaces adds significantly to the discriminative power of the system. Moreover, we show that a vastly reduced set of features is sufficient. Finally, we prove that frames are the class of MR techniques that performs the best in this context. This leads us to consider the construction of a new family of frames for classification, which we term lapped tight frame transforms.

Original languageEnglish (US)
Title of host publicationCISS 2008, The 42nd Annual Conference on Information Sciences and Systems
Pages727-732
Number of pages6
DOIs
StatePublished - 2008
EventCISS 2008, 42nd Annual Conference on Information Sciences and Systems - Princeton, NJ, United States
Duration: Mar 19 2008Mar 21 2008

Publication series

NameCISS 2008, The 42nd Annual Conference on Information Sciences and Systems

Other

OtherCISS 2008, 42nd Annual Conference on Information Sciences and Systems
Country/TerritoryUnited States
CityPrinceton, NJ
Period3/19/083/21/08

ASJC Scopus subject areas

  • Computer Science Applications
  • Information Systems
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Frames in bioimaging'. Together they form a unique fingerprint.

Cite this