Free-locomotion of a fish-like robotic swimmer propelled by a vibrating ionic polymer metal composite

Vladislav Kopman, Matteo Aureli, Maurizio Porfiri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we study the free-locomotion of a miniature bio-mimetic underwater vehicle inspired by carangiform swimming fish. The vehicle is propelled by a vibrating Ionic Polymer Metal Composite (IPMC) attached to a compliant passive fin. The IPMC vibration is remotely controlled through the vehicle's onboard electronics that consists of a small-sized battery pack, an H-Bridge circuit, and a wireless module. The planar motion of the vehicle body is described using rigid-body dynamics. Hydrodynamic effects, such as added mass and damping, are included in the model to enable a thorough description of the vehicle's surge, sway, and yaw motions. The time-varying actions exerted by the vibrating IPMC on the vehicle body, including thrust, lift, and moment, are estimated by combining force and vibration measurements with reduced order modeling based on modal analysis. The model predictions are validated through experimental results on the planar motion of the fish-like robotic swimmer.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages477-484
Number of pages8
EditionPART A
ISBN (Print)9780791848920
DOIs
StatePublished - 2010
Event2009 ASME Dynamic Systems and Control Conference, DSCC2009 - Hollywood, CA, United States
Duration: Oct 12 2009Oct 14 2009

Publication series

NameProceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
NumberPART A

Other

Other2009 ASME Dynamic Systems and Control Conference, DSCC2009
Country/TerritoryUnited States
CityHollywood, CA
Period10/12/0910/14/09

ASJC Scopus subject areas

  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Free-locomotion of a fish-like robotic swimmer propelled by a vibrating ionic polymer metal composite'. Together they form a unique fingerprint.

Cite this