Free-Standing Photocrosslinked Protein Polymer Hydrogels for Sustained Drug Release

Yao Wang, Xiaole Wang, Jin Kim Montclare

Research output: Contribution to journalArticlepeer-review


The fabrication of protein hydrogels consisting of different properties and functional motifs is critical in the development of protein-based materials for biomedical applications. Here, we report the design and characterization of a triblock protein polymer, CEC, composed of two different self-assembling domains derived from elastin protein (E) and coiled-coil protein (C), photopolymerized with a NHS-diazirine (D) crosslinker into a CEC-D hydrogel. The optimal photocrosslinker concentration and exposure time is determined to fabricate a free-standing hydrogel. Upon increasing the concentration of the CEC-D monomer and environmental temperature, the CEC-D hydrogel's conformation decreases in helical content from 58.0% to 44.8% and increases in β-content from 25.9% to 38.1%. These gels experience 55 ± 6% protein erosion from the free-standing gel in 13 days as the gel films gradually decrease in size. The swelling ratio of 12 ± 1% denotes that the gel has a swelling ability comparable to other protein hydrogels. These photocrosslinked CEC-D hydrogels can be employed for drug delivery with high encapsulation and 14 ± 2% release of curcumin into the supernatant in a week long study. Overall, the photocrosslinked CEC-D hydrogels exhibit stability, swelling ability, and sustained release of drug.

Original languageEnglish (US)
Number of pages14
Issue number4
StatePublished - Apr 12 2021


  • Drug Carriers
  • Drug Liberation
  • Elastin
  • Hydrogels
  • Polymers

ASJC Scopus subject areas

  • Bioengineering
  • Materials Chemistry
  • Polymers and Plastics
  • Biomaterials


Dive into the research topics of 'Free-Standing Photocrosslinked Protein Polymer Hydrogels for Sustained Drug Release'. Together they form a unique fingerprint.

Cite this