Abstract
The dyadic wavelet transform is an effective tool for processing piecewise smooth signals; however, its poor frequency resolution (its low Q-factor) limits its effectiveness for processing oscillatory signals like speech, EEG, and vibration measurements, etc. This paper develops a more flexible family of wavelet transforms for which the frequency resolution can be varied. The new wavelet transform can attain higher Q-factors (desirable for processing oscillatory signals) or the same low Q-factor of the dyadic wavelet transform. The new wavelet transform is modestly overcomplete and based on rational dilations. Like the dyadic wavelet transform, it is an easily invertible 'constant-Q' discrete transform implemented using iterated filter banks and can likewise be associated with a wavelet frame for L2 (ℝ). The wavelet can be made to resemble a Gabor function and can hence have good concentration in the time-frequency plane. The construction of the new wavelet transform depends on the judicious use of both the transform's redundancy and the flexibility allowed by frequency-domain filter design.
Original language | English (US) |
---|---|
Pages (from-to) | 2957-2972 |
Number of pages | 16 |
Journal | IEEE Transactions on Signal Processing |
Volume | 57 |
Issue number | 8 |
DOIs | |
State | Published - 2009 |
Keywords
- Constant-Q transform
- Multirate filter banks
- Q factor
- Rational-dilation wavelet transform
- Wavelet transforms
ASJC Scopus subject areas
- Signal Processing
- Electrical and Electronic Engineering