TY - JOUR
T1 - Frequency domain multimodel analysis of the response of Atlantic meridional overturning circulation to surface forcing
AU - Macmartin, Douglas G.
AU - Tziperman, Eli
AU - Zanna, Laure
PY - 2013/11
Y1 - 2013/11
N2 - The dynamics of the Atlantic meridional overturning circulation (AMOC) vary considerably among different climate models; for example, some models show clear peaks in their power spectra while others do not. To elucidate these model differences, transfer functions are used to estimate the frequency domain relationship between surface forcing fields, including sea surface temperature, salinity, and wind stress, and the resulting AMOC response. These are estimated from the outputs of the Coupled Model Intercomparison Project phase 5 (CMIP5) and phase 3 (CMIP3) control runs for eight different models, with a specific focus on Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1), and the Community Climate System Model, version 4 (CCSM4), which exhibit rather different spectral behavior. The transfer functions show very little agreement among models for any of the pairs of variables considered, suggesting the existence of systematic model errors and that considerable uncertainty in the simulation of AMOCin current climate models remains. However, a robust feature of the frequency domain analysis is that models with spectral peaks in their AMOC correspond to those in which AMOC variability is more strongly excited by high-latitude surface perturbations that have periods corresponding to the frequency of the spectral peaks. This explains why different models exhibit such different AMOC variability. These differences would not be evident without using a method that explicitly computes the frequency dependence rather than a priori assuming a particular functional form. Finally, transfer functions are used to evaluate two proposed physical mechanisms for model differences in AMOC variability: differences in Labrador Sea stratification and excitation by westward-propagating subsurface Rossby waves.
AB - The dynamics of the Atlantic meridional overturning circulation (AMOC) vary considerably among different climate models; for example, some models show clear peaks in their power spectra while others do not. To elucidate these model differences, transfer functions are used to estimate the frequency domain relationship between surface forcing fields, including sea surface temperature, salinity, and wind stress, and the resulting AMOC response. These are estimated from the outputs of the Coupled Model Intercomparison Project phase 5 (CMIP5) and phase 3 (CMIP3) control runs for eight different models, with a specific focus on Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1), and the Community Climate System Model, version 4 (CCSM4), which exhibit rather different spectral behavior. The transfer functions show very little agreement among models for any of the pairs of variables considered, suggesting the existence of systematic model errors and that considerable uncertainty in the simulation of AMOCin current climate models remains. However, a robust feature of the frequency domain analysis is that models with spectral peaks in their AMOC correspond to those in which AMOC variability is more strongly excited by high-latitude surface perturbations that have periods corresponding to the frequency of the spectral peaks. This explains why different models exhibit such different AMOC variability. These differences would not be evident without using a method that explicitly computes the frequency dependence rather than a priori assuming a particular functional form. Finally, transfer functions are used to evaluate two proposed physical mechanisms for model differences in AMOC variability: differences in Labrador Sea stratification and excitation by westward-propagating subsurface Rossby waves.
KW - Atlantic Ocean
KW - Climate models
KW - Meridional overturning circulation
KW - Ocean dynamics
UR - http://www.scopus.com/inward/record.url?scp=84886255402&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886255402&partnerID=8YFLogxK
U2 - 10.1175/JCLI-D-12-00717.1
DO - 10.1175/JCLI-D-12-00717.1
M3 - Article
AN - SCOPUS:84886255402
SN - 0894-8755
VL - 26
SP - 8323
EP - 8340
JO - Journal of Climate
JF - Journal of Climate
IS - 21
ER -