Abstract
In this paper, we treat a formation initialization problem for a multiple spacecraft formation wherein a collective of spacecraft, initially located on a payload delivery vehicle, are required to maneuver and acquire a specified formation pattern. We focus on the modeling and analysis of fuel optimal formation initialization by exploiting a multi-agent, fuel optimal, spacecraft formation reconfiguration methodology. Specifically, we address the formation initialization problem using a hybrid multi-agent optimization architecture, which decomposes the multi-agent optimal control problem as maneuver optimization, task assignment, and parameter optimization problems. In this paper, maneuver optimization, task assignment, and parameter optimization are performed using calculus of variation, dynamic-programming, and genetic algorithm, respectively. Finally, we provide illustrative simulations to show the efficacy of our proposed fuel-optimal formation initialization control architecture.
Original language | English (US) |
---|---|
Pages (from-to) | 3591-3596 |
Number of pages | 6 |
Journal | Proceedings of the IEEE Conference on Decision and Control |
Volume | 4 |
State | Published - 2003 |
Event | 42nd IEEE Conference on Decision and Control - Maui, HI, United States Duration: Dec 9 2003 → Dec 12 2003 |
ASJC Scopus subject areas
- Control and Systems Engineering
- Modeling and Simulation
- Control and Optimization